A Capstone project entitled

To develop a simple intrusion detection system (burglar alarm) using Arduino - A set of teaching materials (12 chapters)

Submitted by

Yeung Kin Wui Anthony

submitted to The Education University of Hong Kong

for the degree of *Bachelor of Education (Honours) (Secondary) - Information and Communication Technology*

in *April 2019*
Declaration

I, Yeung Kin Wui Anthony, declare that this capstone project report represents my own work under the supervision of Mr. Chui Hin Leung, Mike, and that it has not been submitted previously for examination to any tertiary institution.

Signed ______________________

Yeung Kin Wui Anthony

10 April, 2019
Table of contents

1. Introduction .. 4

2. Description of the problems (Needs analysis) .. 4
 2.1 Coherence between teaching chapters .. 4
 2.2 Catering for students’ diverse learning needs ... 5

3. Literature review .. 6
 3.1 Target level of students ... 6
 3.2 Sensors selection .. 6

4. Description of the project (project design) ... 7
 4.1 Learning objectives .. 8
 4.2 Instructional design .. 9
 4.2.1 Scaffolding ... 9
 4.2.2 Cater for learners’ diversity .. 9
 4.3 Chosen platform ... 11
 4.4 Difficulties encountered & solutions .. 11

5. Evaluation and future improvement ... 11

6. References / Bibliography ... 12

7. Appendix .. 13
 7.1 Peer evaluation form (from the 1st ICT major student) .. 13
 7.2 Peer evaluation form (from the 2nd ICT major student) .. 15
 7.3 A Gantt chart of the general development stages of the capstone project 15
1. **Introduction**

When it comes to the teaching materials for Arduino, there are a variety of free resources available on the internet, including those from the official Arduino website, or those from open-source sharing platform such as GitHub and Reddit. That makes me think of an issue: How about if teachers directly utilizing those materials to teach secondary school students? However, some of those materials can be demanding, which fails to cater the learning needs of students. Moreover, for those teaching materials, some chapters can be discrete without using real-life examples for explanation. In view of this, I have developed a set of interconnected teaching materials, with the use of real-life examples (the burglar alarm), to systematically nurture students’ STEM capabilities.

2. **Description of the problems (Needs analysis)**

Prior to the development of the teaching materials, it is vital to think of the reasons of developing a new set of teaching materials. In simple words, it means “why developing a new set of teaching materials, instead of using the available ones on the internet?”

2.1 **Coherence between teaching chapters**

As mentioned, we can discover free resources for Arduino on the internet. However, some of the chapters can be discrete for students to learn. For example, PIR sensors are taught in chapter 1, and ultrasonic sensors are taught in chapter 2. Although students may grasp the basic ideas of both individually, how about the relationships and differences between them? For example, the pros & cons of utilizing PIR sensors and ultrasonic sensors for motion detection. In view of this, in my new set of teaching materials, the relationships between different kind of sensors will be introduced to students, as well as different integrations of sensors into a burglar alarm system.
2.2 Catering for students' diverse learning needs

In this project, my target users will be Form 3 students, but when having looked at some Arduino resources online, I discovered they may not suit the learning needs of Form 3 students. For instance, some online tutorials are delivered in a text and coding-based approach (see pic. 1), and some are designed for learners with certain experiences on Arduino so that no lead-in activities (see pic. 1 & 2) are provided for beginners.

In this sense, my new set of teaching materials are designed based on the ability of Form 3 students, with a range of lead-in activities & hands-on practices at different difficulty levels, to cater the diverse learning needs of Form 3 students.

Pic. 1. Online tutorials of ultrasonic sensors from official Arduino website

Pic. 2. Online tutorials of ultrasonic sensors from official Arduino website
3. **Literature review**

3.1 **Target level of students**

With reference to the curriculum document by the Education Bureau (2017), “coding” is one of the major teaching areas of Form 3 Computer Literacy. The document also stated not less than 30% of lesson time should be allocated to teach coding, which implies the importance of coding education at junior secondary level. Moreover, the curriculum document also provided an example of implementation of Form 3 STEM (see pic. 2):

![Pic 3. an example of F3 STEM stated in EDB’s curriculum document](image)

All in all, by considering the capabilities of Form 3 students, as well as the learning targets of them in IT area as stated in the EDB’s curriculum document, F.3 students are chosen as the target of the new set of teaching materials.

3.2 **Sensors selection**

To ensure the practicability of the example (intrusion detection/burglar alarm) used in the teaching materials, understanding the functions that a modern burglar alarm will offer is vital. With reference to Marked (2013), one of the major purposes of burglar alarms is to identify intrusions, and deliver alerts whenever intrusions are detected. Moreover, Budijono, Andrianto, & Noor (2014) stated that, the detection of motions is the major mission of a burglar alarm, and it can be done using different kinds of sensors, such as PIR sensors, ultrasonic sensors, piezo (vibration) sensors and so on. They also added that, a burglar alarm should be able to generate alerts upon any detection of suspicious motions, and it can be done via different means, such as generating sirens, making lights to blink, sending SMS notifications to security guards.
Based on the literature review, and the consideration of the capabilities of F.3 students, the sensors that will be introduced & taught (burglar alarms as a real-life example) in the set of teaching materials are as follows:

- PIR sensor
- LED units
- Ultrasonic sensor
- Active buzzer
- Passive buzzer
- SW420 vibration sensor
- I2C 1602a LCD
- RC522 RFID module

4. **Description of the project (project design)**

In the appendix, there is a Gantt chart showing the general development stages of the teaching materials starting from sketch to completion:
4.1 Learning objectives

Below is the list of chapters in the set of teaching materials:

- Chapter 1 – PIR sensor
- Chapter 2 – LED units
- Chapter 3 – Ultrasonic sensor
- Chapter 4 – Active buzzer
- Chapter 5 – Passive buzzer
- Chapter 6 – SW420 vibration sensor
- Chapter 7 – I2C 1602a LCD (I)
- Chapter 8 – I2C 1602a LCD (II)
- Chapter 9 – RC522 RFID module (I)
- Chapter 10 – RC522 RFID module (II)
- Chapter 11 – RC522 RFID module (III)
- Chapter 12 – Consolidation

In general, the learning objectives of these chapters are divided into three domains, namely cognitive domain, affective domain and skill domain, and they are listed below:

Cognitive domain: To equip students with basic programming techniques (e.g. if-then-else clause) through the Arduino project

Affective domain: To nurture students’ computational thinking capability through the development process

Skill domain: To enable students with skills to assemble different kind of sensor into a functioning system (burglar alarm)

As for the lesson objectives of each chapter, please refer to the teaching slides.
4.2 Instructional design

4.2.1 Scaffolding

In order to equip students with the ability to develop a burglar alarm independently according to different requirements, scaffolding design is used in the teaching materials. For example, in each of the chapters, students will first start with some easier tasks such as understanding how a sensor work, then moving to more difficult tasks such as the hands-on practice of connecting a sensor to Arduino and program the sensor to work.

4.2.2 Cater for learners’ diversity

In order to cater for the learning needs of students at different level, for the teaching materials in each chapter, tips and reminder will be included to help the less-able students to follow the contents being taught easier. For the more-able students, it is possible that the can finish the lesson tasks quickly. To ensure their interest to the lesson content, challenging task will also be included as an enrichment at higher level for the competent students. In fact, the challenging task is not just serving the purpose of keeping students’ interest, but it also foreshadows the teaching contents of next chapter.
Tips and reminder for less-able students

- We already know using ultrasonic sensor can detect distance, so why we have to **combine the use of PIR sensor**, is that redundant?

 Is that good if the ultrasonic sensor are activated all the time for motion detection?
 - Using a PIR sensor to detect if an object is in range → in range → activate ultrasound sensor to detect distance → in distance range → trigger alert
 → (**reduce battery consumption**)

 The ultrasonic sensor have to use at least **5V power**
 - The 3.3V pin on Arduino will not work.

Challenging tasks for more-able students

- How about if you want to trigger an alert by making two LED units to blink interchangeability, when the ultrasound sensor has detected an object **within 60 cm?**
4.3 Chosen platform

In the set of teaching materials, the Arduino Mega 2560 and the official Arduino IDE are selected for the development of the burglar alarm system. The justifications of the decision are that the Arduino Mega 2560 provides more digital pins for sensors and modules than Arduino UNO. Moreover, the total current allowed on Arduino Mega 2560 is higher than Arduino UNO, which may ensure the stability of the system when there are a lot of components connected to the mainboard.

4.4 Difficulties encountered & solutions

At the very beginning, Arduino UNO was chosen instead of Arduino Mega 2560. However, during the testing phase, I discovered some readings from sensors are abnormal (e.g. -1000 from shock sensor), but when connecting only the affected sensor to UNO, there was no problem with the readings. Having read the specification sheet of Arduino carefully, I discover the culprit may be the overcurrent issue, which means the connect sensors may have exceed the maximum allowed current of Arduino UNO. Later, I changed the mainboard to Arduino Mega 2560 and it solved the problem.

5. Evaluation and future improvement

For the teaching materials, the target students can gain more experiences on some essential techniques on integrating different kind of modules into a functioning system by having hands-on practices on developing a burglar alarm on Arduino platform. Having said that, the type of sensors covered in the teaching materials cannot reflect the full functionality of a burglar alarm system in real-world. For instance, the example of the burglar alarm in the teaching materials could be more comprehensive if few chapters are added to teach students on how to utilize a GSM module to send notification(alert) SMS upon detections of intrusions. Still, the capabilities of the target students have to be considered before making such adjustments.
6. References / Bibliography

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultation with supervisor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project proposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal refinement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature review stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target level of students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booting required sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program the sensors to work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors interconnection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop teaching materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit test of individual modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System test (Burger alone)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultation with supervisor for enhancing the teaching materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalising stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer evaluation for further optimizing the teaching materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>